
Quantum Coding Theory (UC Berkeley CS294, Spring 2024)

Lecture 12: The Toric Code
March 1, 2024

Lecturer: John Wright Scribe: Sandy Irani

1 Introduction to the Toric Code

Kitaev’s toric code [Kit03] is a remarkably original construction, especially considering that
it was first intoduced only two years after Shor’s original 9-qubit code. To begin with the
description of the toric code, we start with a diagram of the torus and notice that there are
two different types of loops that go around the torus as shown below in red and blue.

We will draw the torus in 2D with the understanding that the right edgeof the square
(highlighted in green) is identified with the left edge and the bottom edge (also highlighted in
green) is identified with the top edge. The red loop is shown then from left to right and the
blue loop extends from top to bottom. In traveling upwards on the blue loop, when the top
edge is reached, the loop continues from the bottom. This is just like the game of Pac-Man:
when the Pac-Man disappears off the top side of the screen, it appears instantaneously on
the bottom edge at the same horizontal position.

We will now cellulate the torus by laying a square grid on the surface.
There are three types of objects of interest:

• Vertices: where two lines intersect.

1

• Edges: the segment connecting two neighboring vertices.

• Plaquettes: the squares formed by four neighboring edges.

The torus shown above is a 6 × 6 torus since the edges and vertices on the right are
identified with the edges and vertices on the left. Also, the edges and vertices on the bottom
are identified with the edges and vertices on the top.

In an L×L torus, there are L2 vertices since there is a vertex where every horizontal and
every vertical line intersect. The number of edges is 2L2. This can be seen by associating
each vertex with the two edges that extend to the right and below that vertex. Since each
edge is assigned to a unique vertex and there are two edges assigned to each vertex, the
number of edges must be twice the number of vertices. There are also L2 plaquettes in an
L×L torus because each vertex can be uniuely identified with the plauette that is just below
and to the right of that vertex.

2 Classical codes defined on the torus

The toric code is a CSS defined on the torus. We start by defining the two classical codes
that are used in the construction of the toric code. In the figures, we will use blue for the
classical code Cx and red for the classical code Cz. The bits are assigned to the edges of the
torus. The figure below shows a 3×3 code on the torus. The bitstring for a codeword is read
from left to right, so the string associated with the torus below is 010,110,011,101,011,111.
The commas are included to make it easier to read.

2

There will be a parity check in Cx for each vertex in the torus. The bits checked will be
the bits on the four edges incident to that vertex. The string associated with the parity check
for vertex v will have a 1 for each bit that lies on an edge incident to v and a 0 everywhere
else. The parity check enforces the condition that the number of 1’s on the edges incident
to v must be even. The string corresponding to the blue parity check in the figure above is
000,001,011,001,000,000.

Th parity checks for Cz correspond to the plaquettes. The parity check enforces the
condition that the number of 1’s on the edges bordering that plaquette must be even. The
string associated with a parity check for plaquette p has a 1 for each edge bordering the
plaquette and a 0 everywhere else. The string corresponding to the red parity check in the
figure above is 000,000,100,110,100,000.

Now that Cx and Cz have been defined, the fact below establishes that the two codes can
be used together to form a CSS code.

Fact 2.1. For each hx ∈ C⊥x and each hz ∈ C⊥z , hx · hz = 0 (mod 2).

Proof. We only need to check the fact for a basis of elements in C⊥x and a basis of elements
in C⊥x . The vertex parity checks form a basis for C⊥x and the plaquette parity checks form
a basis for C⊥z . Let p be a plaquette and hz,p ∈ C⊥z be the string associated with the parity
check for p. Let v be a vertex and hx,v ∈ C⊥x be the string associated with the parity check
for v. We will consider two cases:

Case 1: Plaquette p is disjoint from the parity check for vertex v. This situation is
pictured in the figure above. In this case, there are no locations where hz,p and hx,v both
have a 1, which implies that hz,p · hx,v = 0.

Case 2: Plaquette p and the parity check for vertex v share a common edge. This
situation is pictured in the figure below.

In this case, edges incident to v have exactly two edges in common with the edges bordering
p. This means that there are exactly two locations where hz,p and hx,v both have a 1, which
also implies that hz,p · hx,v = 0.

Corollary 2.2. Cx and Cz can be used to form a CSS code.

How good is the CSS code formed from Cx and Cz? In order tow answer this question,
we start by first describing the set of strings which satisfy all the parity checks in Cx. First
of all, the all 0’s string is always in Cx. Now imaging flipping a bit on some edge e = {v, w}.

3

The two partiy checks centered at v and w are now violated. In order to restore those parity
checks, we need to flip another bit at an edge incident to each of v and w. This restores the
parity checks at v and w but now two new vertex parity checks have been violated and we
need to flip a bit at edges incident to those two vertices. This process continues forming a
path of 1’s in the grid. At any point in this process, the parity checks at the endpoints of the
path are violated. The only way then to satisfy all the parity checks is for the two endpoints
of the path to meet, forming a closed loop. Therefore, the strings in Cx correspond to edges
of closed loops in the grid and all linear combinations of those loops.

Fact 2.3. The distance of Cx is at most 4

Proof. The distance of Cx is the minimum weight of a codeword in the code. If you pick a
plaquette p and put 1’s on the edges bordering the plaquette and 0s everywhere else, then all
of the vertex parity checks are satisfied. The associated string is in Cx and has weight 4.

Another way to establish the fact that the distainc of Cx is at most 4 is to observe that
C⊥z ⊆ Cx. Therefore the parity checks corresponding to plaquettes (which have weight 4 and
are in C⊥z) are also in Cx.

The parity checks in C⊥z are described by borders of sets of plaquettes: pick any subset of
the plaquettes and take the border of this set of plaquettes. The resulting edges are always
a set of closed loops. See the figure below for an example.

Note that the set of all plaquette parity checks in C⊥z is not independent because every
edge borders exactly two plaquettes, so∑

p

hz,p = 0.

However, if we take any proper subset of the set of plaquettes and sum over those parity
checks, the result will be non-zero. This is because a proper subset of the plaquettes must
contain a plaquete with a neighboring plaquette that is not included in the subset. The edge
between the included plaquette and the excluded plaquette will only be included once in

4

the sum. The resulting sum will be a string that is not all 0’s. Therefore, we can remove
any plaquette term from the set of all plaquettes and the resulting set will correspond to an
independent set of parity checks. In other words, if we identify a particular plaquette p∗, the
set {hz,p}p 6=p∗ forms a linearly independent basis for C⊥z . The number of checks in a linearly
independent basis for C⊥z is the number of plaquettes minus 1, which is L2 − 1.

We have now given descriptions for the codewords in Cx and and the parity checks in C⊥z .
The codewords in Cz and parity checks in C⊥x are not as intuitive to describe in the original
lattice. However, they do have clean definition in the dual lattice.

To obtain the dual lattice, move the entire lattics down and to the right by half a square
length. The picture below shows the original lattice in bold and the dual lattice in grey.

Vertices in the primal lattice correspond to plaquettes in the dual lattice, and plaquettes
in the primal lattice correspond to vertices in the dual lattice. The set of bits on edges is
exactly the same. Moreover, the relationship of the edges to the vertices/plaquettes remains
the same, so the four edges that border a plaquette in the primal lattice are exactly the
four edges that are incident to the corresponding vertex in the dual lattice. Similarly, the
four edges incident to a vertex in the primal lattice are exactly the four edges bordering
the corresponding plaquette in the dual lattice. Therefore, we can apply exactly the same
reasoning in the dual lattice to understand the structure of Cz and C⊥x . Fortunately, the
dual lattice is also an L× L grid, so the descriptions of these sets and their parameters are
exactly the same.

3 Putting Cx and Cz together to form the Toric Code

We are now well positioned to describe the quantum CSS code resulting from Cx and Cz.
The stabilizers for the quantum code are generated by Paulis oof the form Xv (which denotes
an X operator appied to the qubits on the edges incident to vertex v) and Zp (which denotes
a Z operator applied to the qubits on the edges bordering plaquette p).

The number of physical qubits is the number of edges, which is 2L2. The number of
logical qubits is 2L2 minus the number of indepdent parity checks in C⊥x and C⊥z . We have

5

argued that the number of indepedent parity checks in C⊥x is L2 − 1, and the same holds for
C⊥z . Therefore the number of logical qubits is:

2L2 − (L2 − 1)− (L2 − 1) = 2.

It remains to determine the distance d+ = min{d+x , d+z }. Since the two codes are isomorphic,
we only need to determine d+x = minc∈Cx\C⊥z |c|. Recall that we have argued that dx and dz
are at most 4. However, we can get a much better bound by considering d+x .

The elements of the classical code Cx are the set of all closed loops in the torus, and
C⊥z is the set of call closed loops that are boundaries of plaquettes. The set Cx\C⊥z is
then the set of all loops that go around the torus, either from left to right or from top to
bottom, or both. In the quantum setting, these correspond to Pauli strings that commute
with all the Xv operators but are not products of Zp operators. These are Pauli strings
consisting of Z operations applied to the qubits on the edges on one of these non-contractible
loop. (A contractible loop corresponds to a set of Z operators applied to the boundary of
a set of plaquettes. These loops are called contractible because they can be transformed to
the identity operation by multiplying by Xp operators.) The figure below shows the two
generators of Cx\C⊥z on the grid and how they correspond to the two loops around the torus.

It’s possible to shift the loops by multiplying by Zp operators, but it is impossible to
transform the red operator into the pink operator by multiplying by Zp’s. The operator
shown in red and pink above are distinct in the code. If we multiply the red operation by
Zp’s, the resulting operation is effectively the same error.

Since the smallest non-contractible loop has to go all the way around the torus in one
direction or the other, it will have length at least L. Therefore d+x = L. Note that this is
much better than the distance of 4 achieved by the two classical codes on their own. The
large difference between d+x and dx indicates that the code is highly degenerate. All of the
small (contractible) loops are indeed errors in the classical codes but they are all equivalent
to no error in the quantum code.

Note that d+z = d+x because the same argument can be made for the dual lattice which is
identical to the primal lattice. The picture below shows the X errors in the primal lattice:

6

The parameters toric code are: [[2L2, 2, L]].
As we shall see in a later lecture, codes that use a shape with larger genus, it’s possible to

have a larger k (number of logical qubits), but this benefit comes at the expense of distance.
We shall also see a code resulting from a grid with aperiodic boundary conditions. This is
more practical because it can be more easily embedded into the flat architecture of a quantum
computer. However, the resulting code can only encode a single logical qubit.

The logical operations on the encoded qubits in the toric code are pictured below:

Let’s verify that the logical operators obey the commutation relationships that we would
expect. Note that X1 and Z2 operate on disjoint sets of qubits, so they commte. The same
holds for X2 and Z1. Also observe that there is exactly one qubit that both X1 and Z1 act
on non-trivially, so X1Z1 = −Z1X1. The same holds for X2 and Z2.

The final step is to show that Z1 and Z2 (and similarly X1 and X2) correspond to distinct
operations modulo the stabilizer group for the code. In other words, there is no Pauli P in
the stabilizer group such that Z1 = Z2 · P . Intuitively, this is essentially showing that the
two loops Z1 and Z2 shown in the figure above are not topologically equivalent, meaning that
it is impossible to obtain one from the other by multiplying by plaqutte operators of the
form Zp. The action of multiplying by plaquette operators has the effect of dragging and
stretching the loop but never cutting it. Recall that the generators of the stabilizer for the
torus are all Paulis of the form Xv or Zp, where v is any vertex and p is any plaquette.

Fact 3.1. There is no stabilizer P for the toric code such that Z1 = Z2 · P .

Proof. Suppose by contradiction that there is a stabilizer P such that Z1 = Z2 · P . Then it
must also be the case that X1 · Z1 = X1 · Z2 · P . However, then we would have that

X1 · Z1 = X1 · Z2 · P = Z2 ·X1 · P = Z2 · P ·X1 = Z1 ·X1.

7

The second equality uses the fact that Z2 and X1 commute (as argued above). The third
equality uses the fact that since P is in the stabilizer group, it must commute with all the
logical operators. The resulting equality contradicts the fact (also argued above) that X1

and Z1 anti-commute.

To frame the parameters of the toric code as a function of the number of physical qubits,
let n = 2L2. The toric code is a [[2L2, 2, L]] code, which means that it is a [[n, 2,

√
n/2]]

code.
One nice property of the two classical codes Cx and Cz used in toric code is that every

parity check only involves a 4 bits and each bit is involved in 4 parity checks. Thus, Cx and
Cz are LDPC (or low-denisty parity check) codes. More generally, the requirement for an
LDPC code C is that it has a basis of parity checks h1, . . . , hl such that each qubit occurs
in O(1) of the hj’s and |hj| = O(1). Note that this property also holds for the toric code
constructed from the two classical LDPC codes.

LDPC codes are nice because the checks can be implemented in parallel. However, it is
more challenging to construct LDPC codes with good parameters.

3.1 Decoding errors

A general error will be of the form E = XaZb. The X-parity checks are used to decode the
Z errors, so we will focus on Zb. The analysis for Xa is similar. The set of edges denoted
by string b will form a set of disjoint paths. The errors are only detected at endpoints of
the path because if Z operations are applied to the qubits on two edges incident to vertex v,
the v parity check will commute with the error. For example, the two errors shown below
(applying a Z operation to the qubits on the red edges) will yield the same syndrome:

Given a particular syndrome consisting of a set of vertices where the X-checks are violated,
we want to find a way to correct the errors that applies a Pauli of minimum weight. This is
achieved by the following decoding algorithm:

8

Decoding Algorithm for the Toric Code
Let G = (V,E,w) be a weighted graph, where:

V is the set of vertices in the torus such that
Xv has a +1 eigenvalue on the given state.

E is the complete graph on V
w(v, w) is the shortest path from v to w in the torus.

Find the minimum weight matching on G
(using, for example, Edmunds’ Blossom algorithm).

This decoding algorithm is guaranteed to find the actual error if for errors of weight at
most L/2. Moreover, under random error models, many more errors can be corrected.

References

[Kit03] A.Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics,
303(1):230, January 2003. 1

9

	Introduction to the Toric Code
	Classical codes defined on the torus
	Putting Cx and Cz together to form the Toric Code
	Decoding errors

